

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Original Com

*	
W	
N	
W	
∞	
7	
0	
7	
W	
∞ 	
W	

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

CO-ORDINATED SCIENCES

0654/33

Paper 3 (Extended)

May/June 2010

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 23 printed pages and 1 blank page.

BLANK PAGE

www.PapaCambridge.com

		3	Q.	
(a)	Naı	me the proteins that carry out each of the follow	wing functions. [1] goes too high	For iner's
	(i)	transports oxygen inside red blood cells	[1]	Tage
	(ii)	reduces the level of glucose in the blood if it g	goes too high	COM
			[1]	
((iii)	catalyses the reaction that breaks down starc	ch to maltose	
			[1]	
	(iv)	attaches to antigens, making it easier for pha	gocytes to destroy them	
			[1]	
(b)		en a person eats more protein than can be ess protein is broken down to produce the was	•	
	(i)	Name the organ in which urea is produced.	[1]	
	(ii)	Describe how urea is removed from the body of what happens in a kidney tubule.	v. You do not need to give any details	
			[3]	
(c)		ggest how a nitrogen atom in a molecule of note of a protein in a person's body.	nitrogen gas in the atmosphere, could	

roduces For siner's

2 The industrial electrolysis of concentrated sodium chloride solution (brine) produce important chemicals, **X**, **Y** and **Z**, as shown in Fig. 2.1.

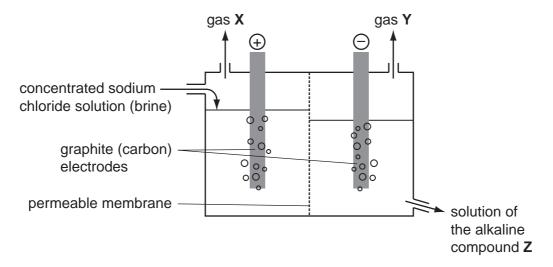


Fig. 2.1

	(a) Write the names	s or chemical	formulae of X	. Y and Z
--	----	-------------------	---------------	---------------	-------------------------

X	
Υ	
Z	[2

(b) Fig. 2.2 shows a diagram of one atom of chlorine.

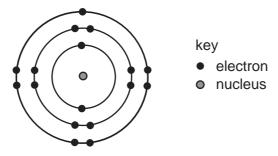


Fig. 2.2

(i) Every electron has a negative electrical charge.

Explain why the chlorine atom does not have an overall electrical charge.	
[2	2

(ii)	Describe, in terms of electrons, what happens when a chlorine atom bonds atom of the metallic element potassium. You may wish to draw diagrams to you answer this question.
	[3]
	101

(c) A sweetener such as sucrose, C₁₂H₂₂O₁₁, (sugar) is sometimes added to fold drinks to make them taste sweeter.

niner's

Sucralose, $C_{12}H_{19}O_8Cl_3$, is a synthetic compound which is used in some other types of sweetener.

Verisweet is a sweetener which contains sucralose mixed with other compounds.

Some information about sucrose and Verisweet is shown in Table 2.1.

Table 2.1

sweetener	mass in a typical spoonful/g	kilojoules per 100 g
sucrose	5.0	1700
Verisweet	0.5	1600

A typical spoonful of Verisweet tastes as sweet as an identical spoonful of sucrose.

(i) Verisweet contains 1% by mass of sucralose.

Calculate the mass of sucralose in a typical spoonful of Verisweet weighing $0.5\,\mathrm{g}$.

		[1]
(ii)	Use your answer to (i) to calculate the number of moles of sucralose in a type spoonful of Verisweet.	ical
	Show your working	

[3]

www.PapaCambridge.com (iii) A typical spoonful of sucrose contains 85 kilojoules. Calculate the number of kilojoules in a typical spoonful of Verisweet.

		[1]
iv)	Verisweet is much more expensive than sucrose.	
	Suggest why some people might choose to use Verisweet rather than sucrose.	
		[2]

The state of the s	
Describe how heat energy from a nuclear reactor is used to produce electricity.	
) Describe how heat energy from a nuclear reactor is used to produce electricity.	ON.
	BATE
	\
	2]
) Describe two advantages of a nuclear power station over a coal-burning power station	ո.
1	
2	
	2]
A transformer at a power station steps up the voltage from 25 000 V to 400 000 V.	
(i) Use the equation	
$\frac{Vp}{Vs} = \frac{Np}{Ns}$	
to calculate the number of turns on the primary coil if there are 20 000 turns on the secondary coil.	ne
Show your working.	
[2	2]

	Explain why electricity is transmitted at such a high voltage. [2]	
	9	
(ii)	Explain why electricity is transmitted at such a high voltage.	For
	To the second se	ig let
		S. CO.
	[2]	
. ,	ne of the waste products formed in nuclear power stations is the isotope rontium-90. Details of this isotope of strontium are:	
	nucleon (mass) number 90 proton (atomic) number 38 half-life 28.8 years	
	rontium-90, like other waste products from nuclear reactors, has been produced by uclear fission.	
(i)	State what happens to atoms during nuclear fission.	
	[1]	
(ii)	Use the information about strontium-90 to work out:	
	the number of protons in a strontium-90 atom,	
	the number of neutrons in a strontium-90 atom. [2]	
(iii)	Strontium-90 decays by beta particle emission.	
	Use the copy of the Periodic Table on page 24 to deduce the identity of the element formed when strontium-90 atoms decay.	
	[1]	

(a) Fig. 4.1 shows how light intensity affects the rate of photosynthesis of a plant.

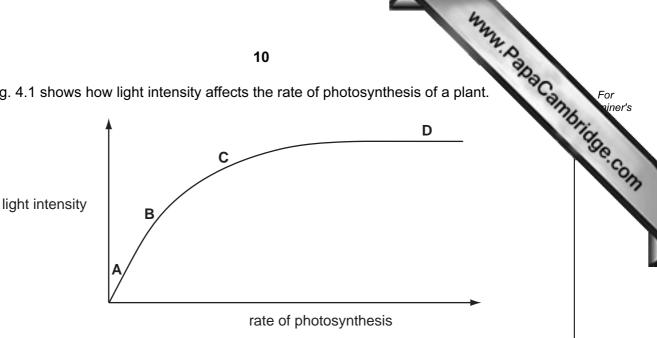


Fig. 4.1

(i)	Explain why light is needed for photosynthesis.
	[2]
(ii)	Give the letter of the part of the graph in which light intensity is not limiting the rate of photosynthesis.
	[1]

(b) The diagrams in Fig. 4.2 show sections through two leaves on the same tree. The two diagrams are drawn to the same scale. The contents of the cells are not shown.

Leaf **A** was taken from a part of the tree that was always in shade. Leaf **B** was taken from a part of the tree that received plenty of sunlight.

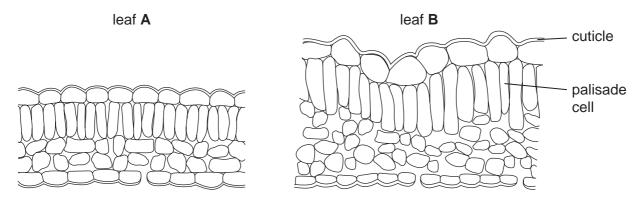


Fig. 4.2

(i) Leaf B has larger palisade cells than leaf A . Suggest an adventage of this to the tree
	Suggest an advantage of this to the tree.
	[2]
(i) Describe two ways, other than the size of the palisade cells, in which leaf B differs from leaf A.
	1
	2
	[2]
(ii) Describe how carbon dioxide travels to a palisade cell in a leaf.
	[3]
(c) T	he differences between leaf A and leaf B are an example of variation.
S	tate whether this variation is caused by
•	genes,
•	the environment,
•	both genes and environment together.
E	xplain your answer.
С	ause of variation
	xplanation

For iner's 5 (a) Solutions of substances in water are acidic, neutral or alkaline.

Table 5.1

		•	12			m	N. PapaCar.
Solutions of substances in w	ater are	e acidi	c, neu	utral o	r alkaline.		DaCal.
Choose pH values from the I	ist to co	omple	te Tal	ole 5.1	1.		
list of pH values	2	5	7	9	13		`
	Т	able	5.1				
liquid		desc	riptio	n		рН	
sodium chloride solution		ne	utral				
acid rain		weakl	y acid	lic			

[2]

(b) A student used the apparatus shown in Fig. 5.1 to investigate the reaction between dilute hydrochloric acid and magnesium.

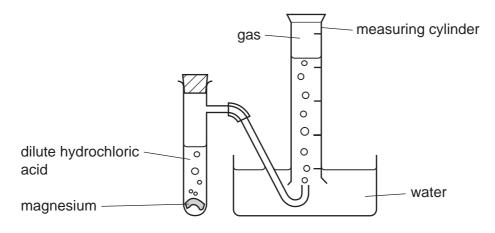


Fig. 5.1

- At the start of the experiment, the inverted measuring cylinder was full of water.
- The student started the reaction by dropping a weighed piece of magnesium into a known volume of dilute hydrochloric acid.
- She replaced the bung and started a stopwatch.
- She recorded the time taken for gas to collect in the inverted measuring cylinder.
- Her results are shown as a graph in Fig. 5.2.

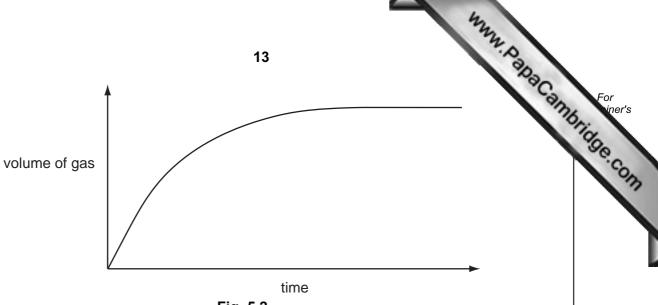


Fig. 5.2

Write a balanced symbolic equation for the reaction between magnesium and dilute hydrochloric acid.	t
[3	3]
 Explain, in terms of collisions between particles, why the rate of the reaction is greatest near the beginning, and then slows down.	S
	 31
	וי

(iii) The student carried out a second experiment in which she used dilute hydrochloric acid that had a higher temperature. She kept all of the other reaction conditions the same as in the first experiment.

On the graph in Fig. 5.2, sketch a line which the student might obtain when she plots the results of this second experiment. [2]

		2.
(a)	(i)	A block of metal has a mass of 720 g and a volume of 80 cm ³ .
		Calculate the density of the block.
		State the formula that you use and show your working.
		formula
		working
		[2]
	(ii)	The block has a specific heating capacity of 400 J/kg $^{\rm o}$ C. It is heated and the temperature rises by 50 $^{\rm o}$ C.
		Calculate the minimum amount of energy required to do this.
		State the formula that you use and show your working.
		formula
		working
		[3]
	(iii)	A force of 100 N acts on this block.
		Calculate the acceleration of the block.
		State the formula that you use and show your working.
		formula
		working

(b) A student tested the block to see if it conducted electricity.

www.PapaCambridge.com Draw a simple circuit which the student could build for this purpose. Use the corre circuit symbols.

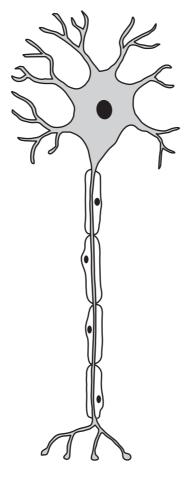


Fig. 7.1

- (i) Use a label line and the appropriate letter to label each of these structures:
 - A axon,
 - **B** nucleus of neurone.

[2]

(ii) A motor neurone may be part of a reflex arc.

Describe the role of a motor neurone in a reflex arc.

[3]

For ainer's

www.papaCambridge.com (b) Sprinters need fast reflexes to make a good start in a 100 m race. The time b the starting gun being fired and the runner pushing off from the starting blocks is kn as the reaction time.

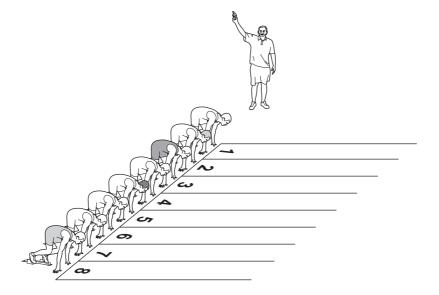


Fig. 7.2

The reaction time is made up of:

- the time taken for the sound from the starting gun to reach the runner's ear,
- plus the time taken for a nerve impulse to pass from the ear to the brain,
- plus the time taken for a nerve impulse to pass from the brain to the leg muscles.
- (i) A runner in lane 1 is 2 m from the starting gun. Sound travels at 330 m/s.

Calculate the time taken for the sound to reach the runner's ear.

Show your working.

[2]
 L

www.PapaCambridge.com

Table 7.1

	reaction time/s								
	heat 1	heat 2	heat 3	heat 4	heat 5	heat 6	heat 7	heat 8	
lane 1	0.133	0.146	0.170	0.160	0.186	0.176	0.149	0.147	
lane 8	0.228	0.223	0.188	0.195	0.178	0.199	0.163	0.167	

	(ii)	Drav	v a ring	arc	ound the	heat that	shows an	omalous	results.			[1]
	(iii)	Desc	cribe the	e re	lationshi	p betwee	n the read	tion time	and the la	ane.		
		Use	your an	SW	er to (b)(i) to sugg	est an ex	planation	for this re	elationship).	
		relat	ionship									
		expl	anation									
												[2]
(c)	Ner	ve im	pulses p	oas	s along r	eurones	from the b	rain to the	e leg mus	cles at abo	out 70 m/s	S.
							duce a siç d a runner			between	the react	ion
	Exp	olain y	our ans	we	r.							
												[2]

8 (a) A racing car is being driven in a race.

The graph in Fig. 8.1 shows the speed of the car over a 26 second period.

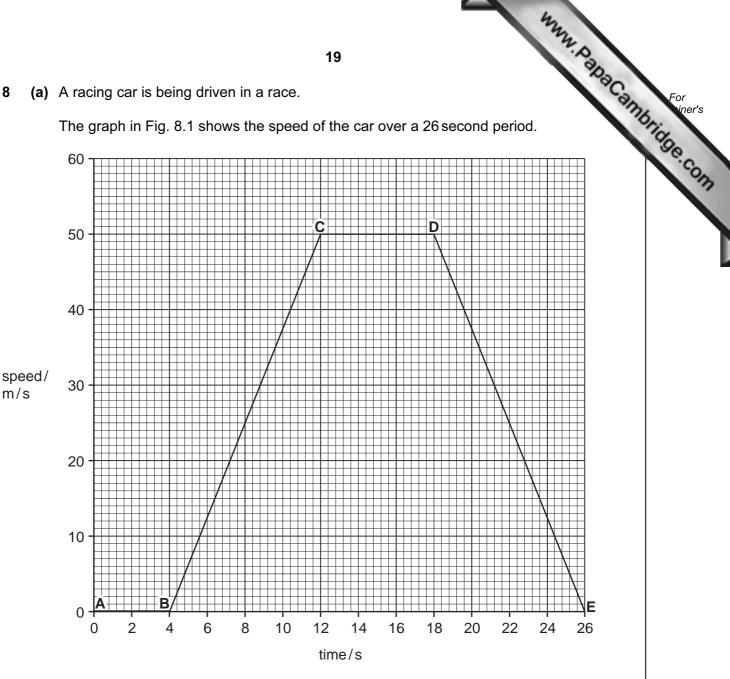


Fig. 8.1

(i)	Between which points on the graph is the car not moving?	
		[1]

(ii) Calculate the acceleration of the car between B and C. Show your working.

[2
 -

www.PapaCambridge.com (b) A wheel on a car needs changing. Fig. 8.2 shows a spanner being used to turn a

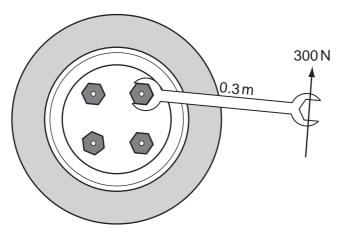


Fig. 8.2

(i) Ca	lculate the	turning	effect	(moment)	of the	spanner.
--------	-------------	---------	--------	----------	--------	----------

State the formula that you use and show your working.

formula

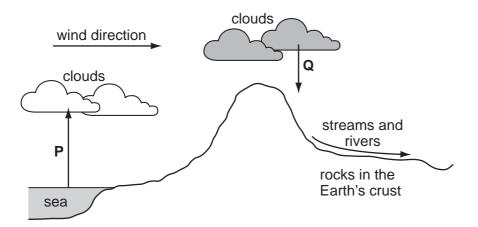
working

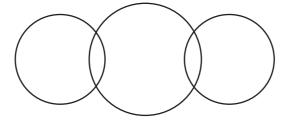
	[2	.]
(ii)	Give two ways in which you could increase the spanner's turning effect.	
	1	
	2	
		21

(c)	c) During a race the air in the tyre is at a temperature of 400 K and a press 120 000 N/m². After the race, the air in the tyre cools down to a temperature of 300.						
	Calculate the new air pressure in the tyre.	-					
	State the formula that you use and show your working.						
	formula						
	working						

Fig. 9.1 shows part of the water cycle. 9

www.PapaCambridge.com Arrow Q shows where rain is falling. The rainwater collects in streams and rivers which flo over rocks in the Earth's crust.




Fig. 9.1

		[2
(a)	Describe the processes which are represented by arrow P in Fig. 9.1.	

(b) Water molecules contain the elements hydrogen and oxygen.

Complete the bonding diagram below to show

- the chemical symbols of the elements in a molecule of water,
- the arrangement of the outer electrons of each atom.

[2]

(c) Fig. 9.2 shows a simplified diagram of a machine for washing dishes (dishwa which is used in a hard water area.

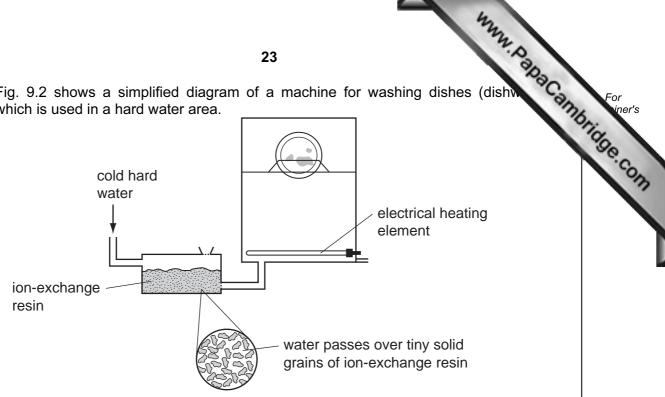


Fig. 9.2

In this machine, the water which is to be used to clean the dishes is first passed through an ion-exchange resin. The water is then heated to a high temperature by the electrical heating element.

(i)) One type of hardness in water may be removed simply by boiling.						
	State the name or chemical formula of the compound which causes this type of hardness.						
	[1]						
(ii)	Describe, in terms of ions, what happens when the cold hard water flows through the ion-exchange resin.						
	[2]						
(iii)	Explain why it is important that the water passes through the ion-exchange resin before it enters the dishwasher.						
	[2]						

The Periodic Table of the Elements DATA SHEET

	0	4 He Helium	20 Ne Neon	40 Ar Argon	84 Krypton 36	131 Xe Xenon 54	Radon 86		175 Lu Lutetium
	=>		19 T Fluorine	35.5 C1 Chlorine	80 Br Bromine	127 I lodine 53	At Astatine 85		173 Yb Ytterbium
	>		16 Oxygen 8	32 S Sulfur	Selenium	128 Te Tellurium	Po Polonium 84		169 Tm Thulium
	>		14 N Nitrogen 7	31 P Phosphorus	AS Arsenic	122 Sb Antimony 51	209 Bi Bismuth		167 Er Erbium
	≥		12 C Carbon	28 Si Silicon	73 Ge Germanium 32	Sn Tin	207 Pb Lead 82		165 Ho Holmium
	=		11 Boron 5	27 A 1 Auminium 13	70 Ga Gallium	115 In Indium 49	204 T 1 Thallium		162 Dy Dysprosium
					65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury		159 Tb Terbium
					64 Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium
Group					59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium
Ģ			1		59 Co	Rhodium 45	192 Ir Iridium		Samarium
		Hydrogen			56 Fe Iron	Ru Ruthenium 44	190 Os Osmium 76		Pm
					Manganese	Tc Technetium 43	186 Re Rhenium 75		144 Ne odymium
					Chromium	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum		140 Ce rium
					48 T Titanium	2r Zrconium 40	178 # Hafnium *		1
					Scandium 21	89 ×	139 La Lanthanum 57 *	227 AC Actinium †	d series eries
	=		9 Be Beryllium	Mg Magnesium	40 Ca Calcium	Sr Strontium	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series 190-103 Actinoid series
	_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	Rubidium 37	133 Cs Caesium 55	Francium 87	*58-71 L

www.papaCambridge.com Mo 69 Fn 89 The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). Es 29 Californium 98 ರ 99 ਲ 65 Curium Curium 64 Am 63 Pu 62 용 61 238 9 Ра 29 232 **7** Thorium 28 90 b = proton (atomic) number a = relative atomic mass

X = atomic symbol

в 🗶

Key

7

2

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.